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Abstract. Electron states in two vertically coupled quantum dots are analysed using an exact-
diagonalization method. In the two-electron system, the ground state at zero field is a spin-singlet
state, and this state is eventually replaced by spin-triplet states by applying a vertical magnetic
field. One of the triplet states is stable under the conditions of very weak coupling and larger
asymmetry between the two dots. In the transition from the three- to the four-electron state,
we find a parameter region where the tunnelling current is strongly suppressed because of the
orthogonality of the quantum states. An isospin selection rule is effective under strong-coupling
conditions.

1. Introduction

The atom-like properties of a single quantum dot confined in a double-barrier heterostructure
have been studied by measuring Coulomb oscillations (COs) in the tunnelling current as a
function of the Schottky gate voltage [1]. The separation between the CO peaks reflects a
‘shell structure’ and ‘Hund’s rule’ originating from the degenerate set of single-electron levels
of the system with a cylindrical symmetry. Moreover, CO peaks shift in a magnetic field and
clearly show transitions in the many-electron ground states (GSs) because of the competition
of kinetic energy and intra-dot Coulomb energy evolving with the magnetic field. A system
of two such quantum dots coupled face to face is especially interesting since we can control
two other energies, namely, an inter-dot quantum mechanical coupling energy and an inter-dot
Coulomb energy, while maintaining the cylindrical symmetry. The two vertically coupled
quantum dots (TVCQDs) can be considered as anartificial molecule[2] if the coupling to the
contacts is much smaller than the inter-dot coupling energy. Such coupled-dot systems are
also interesting in that they can represent the few-electron analogue of a system of coupled,
parallel two-dimensional electrons.

The system of coupled dots was first studied in a lateral configuration (by partly depleting
a two-dimensional electron gas with surface gates or by ion implantation) [3–5], and resonant
current peaks, electrostatic couplings of the two dots, and photon-assisted tunnelling have been
demonstrated. Detailed analysis of the CO peaks shows splitting depending on the central-
barrier conductance [6, 7]. This has been done for relatively large coupled-dot systems as
in reference [3], where the single-particle level structure can be neglected. Recently, several
experiments had been conducted on TVCQDs using a triple-barrier heterostructure [8, 9].
In reference [8], single-particle energy levels of only one of the dots were observed since
the confined levels of the two dots were almost out of resonance, whereas the system of
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reference [9] is ideal for studying an artificial molecule, since current was observed near zero
bias when using InGaAs as a well material, and the relative energy offset of the dots with
respect to the contact was controlled by a gate contact. The following discussion assumes the
system of reference [9].

There are four important energy scales in this system, namely, the intra-dot Coulomb
energy

Eintra ∼ e2/(4πε∗l0)
wherel0 is the typical lateral size of the dot andε∗ is a dielectric constant of the material, the
lateral confinement energy ¯hω0 (which is assumed for simplicity to be the same for the two
dots), the energy difference between the symmetric and antisymmetric states,1SAS, due to the
inter-dot quantum mechanical coupling of the otherwise nearly degenerate energy levels in the
two dots, and finally the inter-dot Coulomb energy given by

Einter ∼ e2/
(
4πε∗

√
l20 + d2

)
whered is the separation of the two dots. The level width0 given by the tunnelling to
the contacts is much smaller than the other energies. The energy misalignment of the two
dots,δ, may also be included by assuming realistic experimental conditions, namely, a small
difference in the well thickness or a fluctuation of the In mole fraction in the InGaAs wells [10].
The cylindrical symmetry-breaking potential induced by the in-plane fluctuation of 5% of the
In atoms is negligible since the envelope function spreads over a much longer scale.

Experimentally,1SAS andEinter are controlled by appropriately designing the central-
barrier thicknessd and its height. If1SAS is the largest among these energies, TVCQDs are
nothing more than a thick single dot in the few-electron regime, which has been demonstrated
using CO peak characteristics ford = 2.5 nm TVCQDs in reference [9]. Ifd becomes small,
the two energiesEintra andEinter become comparable and there emerges an interesting situation
whereisospinbecomes a good quantum number and1SAS is an effective magnetic field for
an isospin [11]. In this case, the occupation of an electron in one of the dots corresponds
to an isospin-down state, while the occupation in the other dot corresponds to an isospin-up
state (equivalently, the occupation of an electron in a symmetric state corresponds to a rotated
isospin-down state, while the occupation in an antisymmetric state corresponds to a rotated
isospin-up state). On the other hand, ifd becomes large andEintra � Einter , Einter can
be treated as a small perturbation to the two separated dots [12, 13]. In reference [9] with
d = 7.5 nm, the experimental results strongly suggest that the CO peaks originated from
the process of tunnelling into a state localized in one of the two dots. The case where1SAS

is comparable to or smaller than ¯hω0 is quite interesting, since correlation effects become
important in the complicated level degeneracy as in a single dot under a large magnetic field.
This electron correlation also strongly affects the tunnelling current [14–16]. Therefore, a full
understanding of all of the regimes determined by these four energy scales is quite important.

There have been several theoretical studies on such a system [11, 17–22], although no
systematic study seems to have been conducted yet. This work generalizes the Hamiltonian,
treats the interaction effect by an exact-diagonalization method, and explores the states in
different regimes. Special emphasis is put on the tunnelling characteristics at low temperatures,
but not below the Kondo temperature. Extension of our work to higher temperature is
straightforward.

This paper is organized as follows. Section 2 describes our model of the system, and the
N -electron Hamiltonian is defined; then in section 3 the results for TVCQDs withN = 2 are
presented. Then the results are discussed with isospin representations. Section 4 discusses the
phase diagrams and several mechanisms controlling the tunnelling currents of TVCQDs with
N = 3 and 4, and conclusions follow in section 5.
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2. The model of the system

The model of the TVCQDs is shown schematically in figure 1. The lateral confining potential
is parabolic with a frequencyω0, and the vertical (z-direction) confining potential is formed
by a triple-barrier heterostructure [9]. The rectangular wells with thicknessW are separated
by a central barrier with thicknessd. The well thicknessW is assumed to be much smaller
than any other length scales, i.e. an effective Bohr radius and the wave function spreading in
the lateral direction

l0 =
√
h̄/(m∗ω0)

wherem∗ is an effective mass; hence, only the lowest state in thez-direction is taken into
account, and the effects of the excited states are neglected. If the quantum mechanical
tunnelling through the central barrier is negligible, we have two independent sets of states,
9nmU(ρ, φ, z) and9nmL(ρ, φ, z) wheren,m are the radial and the angular quantum numbers
of the parabolically confined states in thex–y plane (n = 0, 1, 2, . . . andm = 0,±1,±2, . . .)
and U and L mean upper and lower dots, respectively. The confinement energy and the wave
function in thez-direction areEzU, EzL and

ζU/L(z) =
√

2

W
sin

π

W

(
z±

(
W +

d

2

))
for

d

2
< |z| < W +

d

2
.

A magnetic fieldB is applied in thez-direction, and the lateral confinement energy of the
[n,m] Darwin–Fock state is

Enm = (2n + |m| + 1)h̄�− mh̄ωc
2

(1)

whereωc is the cyclotron frequency given byeB/m∗, and� =
√
ω2

0 + ω2
c/4.

W

W

d

x

y

z
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∆
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Figure 1. A schematic diagram of the two vertically coupled quantum dots and the corresponding
energy diagram.

Coupled single-electron states of TVCQDs split into symmetric (S) states and anti-
symmetric (AS) states with an energy difference

1SAS=
√
12

0 + δ2
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which consists of the energy difference between the isolated levels,δ = EzU − EzL , and the
quantum mechanical coupling energy,10. We introduce an angle,θ = arccos(10/1SAS),
characterizing the amount of asymmetry between the dots (θ = 0 is a symmetric case). The
wave functions are given by

ζS(z) = ζL cos2 + ζU sin2 (2)

ζA(z) = ζL sin2− ζU cos2 (3)

whereθ = π/2 − 22 and the electron probability in the barrier (|z| < d/2) is neglected
in evaluating the Coulomb matrix elements in the following, by assuming that the tunnelling
barrier is sufficiently high (that is the case of reference [9]). Since the lateral confinement
potentials of these dots are assumed to be the same, no level mixing occurs by quantum
mechanical coupling; therefore, the single-particle energy spectrum is determined by(q, σ ) =
(n,m, p, σ )wherep is the electron-rotated isospin withpz = ∓ 1

2 depending on an S/AS state
andσ is the electron spin.

The Coulomb matrix element〈q1q2|V |q3q4〉 is calculated as follows:

V DA = 〈SS|V |SS〉 = 〈AA |V |AA 〉 = Vintra(cos42 + sin42) + 2Vinter sin22 cos22 (4)

V DB = 〈SA|V |AS〉 = 〈AS|V |SA〉 = 2Vintra sin22 cos22 + Vinter (cos42 + sin42) (5)

V XA = 〈AA |V |AS〉 = −〈SS|V |SA〉 = 1

4
(Vinter − Vintra) sin 42 (6)

V XB = 〈SS|V |AA 〉 = 〈SA|V |SA〉 = 1

2
(Vintra − Vinter ) sin2 22 (7)

where in the definitions ofV XA andV XB there are six and two other equivalent combin-
ations of S and A (=AS) states, respectively. In the equations, a set of quantum numbers
[n1, m1, n2, m2, n3, m3, n4, m4] is implicit, with the constraintm1 +m2 = m3 +m4 from the
cylindrical symmetry of the system. The intra- and inter-Coulomb integrals are given by

Vintra = 〈LL |V |LL 〉 = 〈UU|V |UU〉 (8)

Vinter = 〈LU|V |UL〉 = 〈UL|V |LU〉 (9)

respectively, with the definition

〈s1s2|V |s3s4〉 =
∫

dr1 dr2 9
∗
s1(r1)9

∗
s2(r2)

e2

4πε∗|r1− r2|9s3(r2)9s4(r1). (10)

The indicess stand fornmU or nmL. Other integrals such as〈LL |V |LU〉 vanish because of
the negligible electron probability in the barrier region.

Now the Hamiltonian for the TVCQDs is

H =
∑
q,σ

(Enm + pz1SAS + σzgµBB)a
†
q,σ aq,σ

+
1

2

∑
q1,q2,q3,q4,σ,σ ′

〈q1q2|V |q3q4〉a†
q1,σ
a

†
q2,σ ′aq3,σ ′aq4,σ (11)

whereg is an effectiveg-factor,µB is the Bohr magneton, andaq,σ anda†
q,σ are annihilation and

creation operators of a stateq and spinσ , respectively. We employ an exact-diagonalization
technique with single-particle basis sets as far as the fourth shell (ten levels for each S/AS
state) to find theN -electron eigen-energiesEN,j , and the eigen-states of the total spinS
and the total angular momentumM , which are represented by a pair(M ,S) [16, 23]. The
probability of occupation of the highest energy level is quite small for the ground and excited
states discussed in the rest of the text. The Coulomb integralsVintra andVinter for possible sets
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of quantum numbers [n1, m1, n2, m2, n3, m3, n4, m4] are evaluated numerically, which reduce
to single integrals, including the finite spreading of the wave functions in thez-direction. We
restricted the values of(10, d) to experimentally accessible pairs corresponding to TVCQDs
with h̄ω0 ∼ 4 meV, and InGaAs wells 12 nm thick. All of the energies are scaled with respect
to h̄ω0 in the following.

The CO current for tunnelling through this triple-barrier structure is estimated using a
standard formula, assuming the probability of tunnelling to the collector to be much smaller than
that of tunnelling to the emitter (the charging condition). At low temperatures, the tunnelling
current is composed of all possible paths that the electron can tunnel along into theN -electron
GS, which then becomes the (N + 1)-electronj th state if the conditionµe > µN,j,G > µc is
fulfilled, where

µN,j,i = EN+1,j − EN,i − Egate.

Egate is the energy offset controlled by a gate contact, andEN,G is the N -electron GS
energy [24]. µe andµc are the electrochemical potentials of the emitter and the collector,
respectively. (For theN + 1 state empty, an additional conditionµe > µN,G,G > µc is
required.) Such a process has a spectral weight

SN,j,G ≡
∣∣∣∣〈9N+1,j |

∑
q,σ

a†
q,σ |9N,G〉

∣∣∣∣2.
More explicitly, the current is obtained from

−e0SN,j,G[f (µe − µN,j,G)− f (µc − µN,j,G)]
summed for all possiblej -states, wheref is a Fermi distribution function in the contacts [25].
0 = 2πDt2c /h̄, whereD andtc are the collector density of states and the energy of tunnelling
to the collector, respectively. We assume that the tunnelling probability is independent of the
single-particle levels.

If 10 < 0 (weaklycoupled dots), we cannot treat the coupled dot as a whole, and the
tunnelling current formula should be modified. Thed = 75 nm dot in reference [9] has
10 ∼ 0.1 meV which is comparable to0. Moreover, in such a situation the electron is apt to
occupy a localized state in one of the dots because of intrinsic asymmetry (finiteδ) or extrinsic
asymmetry (an applied electric field), and the probability of tunnelling to the contacts varies
substantially for differentN -electron states. In the following, we assess the relative amplitude
of the current with the spectral weightSN,j,i assuming10� 0.

3. A two-electron system

First, we discuss the smallest non-trivial system, two electrons in TVCQDs. Figure 2 shows
the two-electron energy spectrum as a function of1SAS with zero magnetic field andδ = 0.
The GS is a spin singlet,(0, 0), occupying symmetric states like|S↑S↓〉 for strong-coupling
conditions. Ifd →∞, Vintra � Vinter � 1SAS, where the Coulomb energy dominates, this
state approaches the Mott-insulator phase in which singlet electrons occupy symmetric and
antisymmetric states coherently:

(|S↑S↓〉 − |AS↑AS↓〉)/
√

2= (|U↑L↓〉 − |U↓L↑〉)/
√

2.

This coherence makes the GSs more stable for smaller1SAS. The(0, 0)state is asymptotically
degenerate with the spin-triplet state(0, 1), |S↑AS↑〉 = |U↑L↑〉, in the limit where1SAS= 0.
The other low-energy triplet excited state is made up of one [n,m] = [0, 0] electron and one
[0,±1] electron,(±1, 1). If a magnetic field is applied in thez-direction, one of the degenerate
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states ([0, 1]) becomes stable. As shown in theωc–1SAS phase diagram, figure 3, the ground
state eventually evolves into spin-triplet states,(0, 1), favoured by Zeeman energy, or into
(1, 1), favoured by exchange energy with reduced kinetic energy, depending on the value of
1SAS (singlet–triplet transition) [19]. Then how should we understand the transition between
(0, 1)and(1, 1)?

4.4

4.2

4.0

3.8

3.6

3.4

3.2

3.0

E
ne

rg
y/

ω 0

1.41.21.00.80.60.40.2

∆SAS/ω0

(1,1)

(0,1)

(0,0)

(1,0)

θ=0, ωc=0

Figure 2. The two-electron energy diagram as a function of1SAS for symmetric dots and zero
field. (0, 0): thick solid curves;(1, 0): thin solid curves;(0, 1): thick dotted curves;(1, 1): thin
dotted curves. See the text for the notation(M ,S). The aligned three boxes and two arrows
show the most probable configurations of two electrons with spin. The lower box shows the
n = 0, m = 0 state and the two upper boxes show then = 0, m = ±1 states. The area to the left
of each curve is for symmetric states and that to the right is for antisymmetric states. Note that
the actually realized configuration is a linear combination of the states having the same(M ,S)
quantum number including the one shown.

An isospin representation makes the physics of this system clearer, where the isospin
pz = ∓ 1

2 corresponds to an S/AS state (therotated isospin representation) [11]. In the
following we simply refer to the rotated isospin as the ‘isospin’ for simplicity. The isospin
operators are defined as

ρl1,l2 = ξ†
l1
1ξl2 (12)

ζl1,l2 = ξ†
l1
σξl2 (13)
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Figure 3. The phase diagram of the symmetric two-electron system as a function of1SAS and
magnetic fieldωc. The inset shows the phase diagram as a function of the asymmetry parameterθ

andωc for 1SAS= 0.1.

where1 is a 2×2 unit matrix,σ is the Pauli’s spin matrix, andξl = (al,A, al,S)t, ξ†
l = (a†

l,A, a
†
l,S)

with l = (n,m, σ). The Hamiltonian for the TVCQDs is therefore

H =
∑
l

(
Elρl,l +

1SAS

2
ζ zl,l

)
+

1

2

∑
l1,...,l4

V
l1,...,l4
D ρl1,l4ρl2,l3

+
1

2

∑
l1,...,l4

V
l1,...,l4
E [ζ xl1,l4ζ

x
l2,l3

cos2 θ + ζ zl1,l4ζ
z
l2,l3

sin2 θ ] (14)

omitting linear terms inρl,l′ , ζl,l′ andEl = Enm + σzgµBB. The Coulomb energy consists of
VD = 1

2(Vintra + Vinter ) andVE = 1
2(Vintra − Vinter ). The terms proportional toVE and1SAS

break the SU(2) isospin symmetry. If we can neglect the contribution ofVE ,P =∑N
k=1pk will

be a good quantum number. The intra-dot Coulomb energy,Vintra, is apparently independent
of the separation,d, between the two dots; however, the inter-dot Coulomb energy,Vinter , is
approximately inversely proportional tod, andVintra = Vinter for d = 0. Therefore,VE(d) is
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a positive monotonically increasing function ofd (or a monotonically decreasing function of
1SAS in our case) withVE(0) = 0 and

lim
d→∞

VE(d) = Vintra/2.
The spintriplet–triplet transition found in figure 3 could be understood as anisospin

singlet–triplet transitionsinceP changes from 0 to 1, which may seem surprising since this
transition occurs for rather small1SAS (or larged) when theVE-term is not small. This
is because the isospin is a good quantum number irrespective of the coupling constant in a
spin-polarized two-electron system, which can be shown by rewriting the Hamiltonian for the
two-electron relative-motion wave function [11].

The inset of figure 3 shows the phase diagram as a function ofθ for 1SAS = 0.1. The
(0, 1)state, corresponding to the situation where two electrons of parallel spin occupy the two
dots,|U↑L↓〉 − |U↓L↑〉, is stable if there is an asymmetry between the two dots. Because of
the Pauli exclusion principle, the electrons cannot hop to the other dot to gain energy of the
order of12

0/Eintra without losing kinetic energy ¯h(� − ωc/2). This is not the case for the
(0, 0) and(1, 1) states. However, ifθ → π/2 (or10 → 0), the other states cannot gain by
quantum mechanical coupling any longer, and the(0, 1) state becomes stable by the gain of
the Zeeman energy.

4. Three- and four-electron systems

The GS phase diagrams of the system of three and four electrons are more complicated.
Figure 4 shows the phase diagrams in a parameter area ofωc and1SAS for symmetric dots
with θ = 0. Phases for1SAS> 0.7 show GS transitions quite similar to those of a single dot.
This is consistent with the experiments [9] withd = 2.5 nm (1SAS∼ 1). ForN = 4 near zero
magnetic field, a spin-polarized phase obeying Hund’s rule is seen. Forωc > 1.5, the angular
momentumM of the GS shows a one-by-one increase, and finally the system drops into a quite
stable maximum-density droplet (MDD) phase (forN = 3, (3, 3/2), and forN = 4, (6, 2)).
The phases for smaller1SAS are very different from those of a single dot.

The CO peak corresponding to the transition from anN -electron system to an (N + 1)-
electron system is suppressed at low temperatures if the change of spin|1S| 6= 1

2 (spin
blockade) [26]. Spin blockade has also been predicted for TVCQDs for the transition from
N = 2 toN = 3 [20] and forN > 12 in a non-parabolic potential [22]. We find it here for a
transition fromN = 3 toN = 4 for the area of1SAS< 0.1 andωc ∼ 1.5 as shown in figure 4,
since the transition corresponds to|1S| = 3

2.
In the limit of d = 0, VE vanishes, so the total isospin quantum numberP is exactly

conserved; thenisospin blockadeis also expected. It might be interesting to see some evidence
of isospin blockade in the situation whereVE is not zero. We evaluated the spectral weight of
possibleN - and (N + 1)-electron eigen-functions for zero field. SinceP is approximately a
good quantum number for strong coupling, we expect that several CO excitation peaks with
|1P | 6= 1

2 will be suppressed. Figure 5(a) shows the spectral weight as a function of1SAS for
transitions fromN = 2 toN = 3 (ωc = 0). The solid thick curves correspond to GS-to-GS
transition. The small spectral weight of the GS–GS transition for very small1SAS ((0, 0) to
(0, 1/2)) could be understood from the stiffness of theN = 2 Mott insulating phase. The curve
indicated by an arrow corresponds to the transition from(0, 1) to (1, 1/2), so no spin selection
rule applies. However, the weight decreases to almost zero with increasing1SAS, since this
transition is approximately fromPz = 0 to 3/2. The weight is restored to a finite value for
1SAS > 1.7 where the transition is now fromPz = 1 to 3/2. More dramatically, we predict
that the CO peak for the transition between(0, 1/2)for N = 3 and(0, 1) for N = 4 is almost
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Figure 4. Phase diagrams of symmetric three-electron (a) and four-electron (b) systems in1SAS–ωc
space.

completely suppressed (figure 5(b)). This suppression is more peculiar than the previous one
since it is almost independent of1SAS. The origin of this suppression is twofold. Among
the configurations making up theN = 3, (0, 1/2)andN = 4, (0, 1) states, transitions with
|1Pz| 6= 1

2 are prohibited by a normal isospin selection rule. And most of the weights of the
other processes vanish because of the wave-function orthogonality. The exception is for the
processes such that all of the electrons occupym = 0 states—for example [0, 0], [1, 0], [2, 0]
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Figure 5. (a) The spectral weight for two-to-three-electron transition as a function of1SAS for zero
field. The thick solid curve shows the GS–GS transition. The dotted curve shows the process with
the spectral weight suppressed with1SAS. The three numbers in the brackets show(M ,S,P ).
(b) The spectral weight for three-to-four-electron transition as a function of1SAS for zero field.
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to [0, 0], [1, 0], [2, 0], [3, 0]. Therefore this suppression is not complete; however, the weight
is of the order of 10−30 in the range of1SAS indicated. A similar effect of the cancelling out of
the matrix elements, although not so strong, had been reported for a single dot in a quasi-one-
dimensional square well [27]. The excited state is about 0.03 (of the order of 1 K) above the
N = 4 GS energy, which suggests that this current blocking could be observed experimentally.
This strong cancellation of the spectral weight originates from the transition processes to the
spin-triplet pair ofN = 4, (0, 1) (parallel spins occupyingm = ±1, for example, obeying
Hund’s rule). Similar strong cancellation is also found in the transitions fromN = 2, (0, 1)
with isospinP = 1 toN = 3, (0, 3/2). This indicates that the TVCQD system offers several
new and interesting mechanisms controlling the tunnelling current.

5. Conclusions

Electron states and tunnelling characteristics for two vertically coupled quantum dots are
analysed. The GS phase diagrams are obtained for two-, three-, and four-electron systems. In
the two-electron system, a spin-singlet state is the GS at zero field, and this state is eventually
replaced by spin-triplet states on applying a vertical magnetic field. One of the triplet states
is stable under conditions of very weak quantum mechanical coupling and larger asymmetry
between the two dots. An isospin selection rule is demonstrated in the two- to three-electron
transitions, which is effective under strong-coupling conditions. In the transitions from the
three-electron to the four-electron state, we find parameter regions where the tunnelling current
is strongly suppressed because of the spin selection ruleor the orthogonality of the quantum
states.
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